Transitive Factorizations of Permutations and Eulerian Maps in the Plane
Loading...
Date
2005
Authors
Serrano, Luis
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
The problem of counting ramified covers of a Riemann surface up to homeomorphism was proposed by Hurwitz in the late 1800's. This problem translates combinatorially into factoring a permutation with a specified cycle type, with certain conditions on the cycle types of the factors, such as minimality and transitivity.
Goulden and Jackson have given a proof for the number of minimal, transitive factorizations of a permutation into transpositions. This proof involves a partial differential equation for the generating series, called the Join-Cut equation. Furthermore, this argument is generalized to surfaces of higher genus. Recently, Bousquet-Mélou and Schaeffer have found the number of minimal, transitive factorizations of a permutation into arbitrary unspecified factors. This was proved by a purely combinatorial argument, based on a direct bijection between factorizations and certain objects called <em>m</em>-Eulerian trees.
In this thesis, we will give a new proof of the result by Bousquet-Mélou and Schaeffer, introducing a simple partial differential equation. We apply algebraic methods based on Lagrange's theorem, and combinatorial methods based on a new use of Bousquet-Mélou and Schaeffer's <em>m</em>-Eulerian trees. Some partial results are also given for a refinement of this problem, in which the number of cycles in each factor is specified. This involves Lagrange's theorem in many variables.
Description
Keywords
Mathematics, combinatorics, algebra, enumeration, graph, generating function, bijection, map, ramified covers of the sphere, factorization, permutation