UWSpace staff members will be away from May 5th to 9th, 2025. We will not be responding to emails during this time. If there are any urgent issues, please contact GSPA at gsrecord@uwaterloo.ca. If any login or authentication issues arise during this time, please wait until UWSpace Staff members return on May 12th for support.
 

3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitors

Loading...
Thumbnail Image

Date

2019-02

Authors

Tolami Hemmati, Sahar
Li, Ge
Wang, Xiaolei
Ding, Yuanli
Pei, Yu
Yu, Aiping
Chen, Zhongwei

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

Herein, a unique nitrogen-doped T-Nb2O5/tubular carbon hybrid structure in which T-Nb2O5 nanoparticles are homogeneously embedded in an in-situ formed nitrogen-doped microtubular carbon is synthesized, utilizing a facile and innovative synthesis strategy. This structure addresses the poor electron conductivity and rate capability that hinder T-Nb2O5's promise as an anode for Li-ion devices. Such a distinctive structure possesses a robust framework that has ultrasmall active nanocomponents encapsulated in highly conductive carbon scaffold with hollow interior and abundant voids, enabling fast electron/ion transport and electrolyte penetration. Moreover, nitrogen-doping not only ameliorates the electronic conductivity of the heterostructure, but also induces pseudocapacitance mechanism. When evaluated in a half-cell, the as-prepared material delivers a specific capacitance of 370 F g−1 at 0.1 A g−1 within 1–3 V vs. Li/Li+ and excellent cyclability over 1100 cycles. A high energy density of 86.6 W h kg−1 and high power density of 6.09 kW kg−1 are realized. Additionally, a capacitance retention as high as 81% after 3500 cycles is achieved in an Li-ion Capacitor (LIC) with activated carbon as the cathode and nitrogen-doped T-Nb2O5/tubular carbon as the anode.

Description

The final publication is available at Elsevier via https://doi.org/10.1016/j.nanoen.2018.10.048. © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Li-ion intercalation pseudocapacitance, orthorhombic niobium oxide, in-situ polymerization, nitrogen doping

LC Subject Headings

Citation