Synthesis and Study of a Lithium-Selective Chelator

dc.contributor.authorBrutto, Mark
dc.date.accessioned2024-09-17T16:32:46Z
dc.date.available2024-09-17T16:32:46Z
dc.date.issued2024-09-17
dc.date.submitted2024-09-13
dc.description.abstractLithium, the lightest metal on the periodic table, serves as a very valuable resource due to its many applications in things such as glass and ceramics, greases, and most importantly, batteries. The battery industry consumes the majority of our collected lithium, and this trend is expected to continue with increased electric vehicle usage. An increased awareness for our carbon footprint and greenhouse gas emissions, along with governmental legislation has led to an exponential increase in our lithium demand. Unfortunately, current lithium collection processes are unable to keep up with this increased demand, thus creating a need for new or improved lithium collection processes. The majority of lithium is collected from two major sources, lithium-rich brines in the ABC (Argentina, Bolivia, Chile) region and China, as well as minerals and ores typically found in China and Australia. Current techniques include expensive processes such as roasting and leaching from minerals and ores, or lengthy precipitation processes from pre-evaporated brines, both of which have proven to be unfit for future industrial demands. This research aims to develop and study a lithium-selective ligand that will eliminate lengthy evaporation processes typically associated with lithium collection from brines. Chapter 1 begins with a literature review on lithium and its societal and economic importance. It will explore current lithium isolation processes and their drawbacks preventing more expansive and efficient collection. Chapter 2 will include the inspiration behind our ligand design, starting with a preliminary direction and a complete adjustment upon computational calculations. Chapter 3 will include the synthesis and study of our proposed motif, illustrating a cheap and efficient synthesis, and promising preliminary lithium selectivity when compared with other 1st group cations.
dc.identifier.urihttps://hdl.handle.net/10012/21020
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleSynthesis and Study of a Lithium-Selective Chelator
dc.typeMaster Thesis
uws-etd.degreeMaster of Science
uws-etd.degree.departmentChemistry
uws-etd.degree.disciplineChemistry
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms1 year
uws.contributor.advisorSchipper, Derek
uws.contributor.affiliation1Faculty of Science
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Brutto_Mark.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections