Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces

dc.contributor.authorHays, Christopheren
dc.date.accessioned2007-05-08T14:00:36Z
dc.date.available2007-05-08T14:00:36Z
dc.date.issued2006en
dc.date.submitted2006en
dc.description.abstract<html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head> Let &Sigma;<em><sub>g</sub></em> be a closed Riemann surface of genus <em>g</em>. Generalizing Ivan Smith's construction, for each <em>g</em> &ge; 1 and <em>h</em> &ge; 0 we construct an infinite set of infinite families of homotopic but pairwise non-isotopic symplectic surfaces inside the product symplectic manifold &Sigma;<em><sub>g</sub></em> ×&Sigma;<em><sub>h</sub></em>. In particular, we achieve all positive genera from these families, providing first examples of infinite families of homotopic but pairwise non-isotopic symplectic surfaces of even genera inside &Sigma;<em><sub>g</sub></em> ×&Sigma;<em><sub>h</sub></em>.en
dc.formatapplication/pdfen
dc.format.extent633210 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10012/2917
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.rightsCopyright: 2006, Hays, Christopher. All rights reserved.en
dc.subjectMathematicsen
dc.subjectSymplectic Manifoldsen
dc.subjectIsotopy Problemen
dc.subjectBranched Coversen
dc.titleNon-Isotopic Symplectic Surfaces in Products of Riemann Surfacesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentPure Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cshays2006.pdf
Size:
618.37 KB
Format:
Adobe Portable Document Format