UWSpace staff members will be away from May 5th to 9th, 2025. We will not be responding to emails during this time. If there are any urgent issues, please contact GSPA at gsrecord@uwaterloo.ca. If any login or authentication issues arise during this time, please wait until UWSpace Staff members return on May 12th for support.
 

Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces

dc.contributor.authorHays, Christopheren
dc.date.accessioned2007-05-08T14:00:36Z
dc.date.available2007-05-08T14:00:36Z
dc.date.issued2006en
dc.date.submitted2006en
dc.description.abstract<html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head> Let &Sigma;<em><sub>g</sub></em> be a closed Riemann surface of genus <em>g</em>. Generalizing Ivan Smith's construction, for each <em>g</em> &ge; 1 and <em>h</em> &ge; 0 we construct an infinite set of infinite families of homotopic but pairwise non-isotopic symplectic surfaces inside the product symplectic manifold &Sigma;<em><sub>g</sub></em> ×&Sigma;<em><sub>h</sub></em>. In particular, we achieve all positive genera from these families, providing first examples of infinite families of homotopic but pairwise non-isotopic symplectic surfaces of even genera inside &Sigma;<em><sub>g</sub></em> ×&Sigma;<em><sub>h</sub></em>.en
dc.formatapplication/pdfen
dc.format.extent633210 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10012/2917
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.rightsCopyright: 2006, Hays, Christopher. All rights reserved.en
dc.subjectMathematicsen
dc.subjectSymplectic Manifoldsen
dc.subjectIsotopy Problemen
dc.subjectBranched Coversen
dc.titleNon-Isotopic Symplectic Surfaces in Products of Riemann Surfacesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentPure Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cshays2006.pdf
Size:
618.37 KB
Format:
Adobe Portable Document Format