Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces
dc.contributor.author | Hays, Christopher | en |
dc.date.accessioned | 2007-05-08T14:00:36Z | |
dc.date.available | 2007-05-08T14:00:36Z | |
dc.date.issued | 2006 | en |
dc.date.submitted | 2006 | en |
dc.description.abstract | <html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head> Let Σ<em><sub>g</sub></em> be a closed Riemann surface of genus <em>g</em>. Generalizing Ivan Smith's construction, for each <em>g</em> ≥ 1 and <em>h</em> ≥ 0 we construct an infinite set of infinite families of homotopic but pairwise non-isotopic symplectic surfaces inside the product symplectic manifold Σ<em><sub>g</sub></em> ×Σ<em><sub>h</sub></em>. In particular, we achieve all positive genera from these families, providing first examples of infinite families of homotopic but pairwise non-isotopic symplectic surfaces of even genera inside Σ<em><sub>g</sub></em> ×Σ<em><sub>h</sub></em>. | en |
dc.format | application/pdf | en |
dc.format.extent | 633210 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/10012/2917 | |
dc.language.iso | en | en |
dc.pending | false | en |
dc.publisher | University of Waterloo | en |
dc.rights | Copyright: 2006, Hays, Christopher. All rights reserved. | en |
dc.subject | Mathematics | en |
dc.subject | Symplectic Manifolds | en |
dc.subject | Isotopy Problem | en |
dc.subject | Branched Covers | en |
dc.title | Non-Isotopic Symplectic Surfaces in Products of Riemann Surfaces | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Pure Mathematics | en |
uws.peerReviewStatus | Unreviewed | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1