Demystifying Foreground-Background Memorization in Diffusion Models

dc.contributor.authorDi, Jimmy Z.
dc.date.accessioned2026-01-07T16:08:56Z
dc.date.available2026-01-07T16:08:56Z
dc.date.issued2026-01-07
dc.date.submitted2025-09-25
dc.description.abstractDiffusion models (DMs) memorize training images and can reproduce near-duplicates during generation. Current detection methods identify verbatim memorization but fail to capture two critical aspects: quantifying partial memorization occurring in small image regions, and memorization patterns beyond specific prompt-image pairs. To address these limitations, we propose Foreground Background Memorization (FB-Mem), a novel segmentation-based metric that classifies and quantifies memorized regions within generated images. Our method reveals that memorization is more pervasive than previously understood: (1) individual generations from single prompts may be linked to clusters of similar training images, revealing complex memorization patterns that extend beyond one-to-one correspondences; and (2) existing model-level mitigation methods, such as neuron deactivation and pruning, fail to eliminate local memorization, which persists particularly in foreground regions. Our work establishes an effective framework for measuring memorization in diffusion models, demonstrates the inadequacy of current mitigation approaches, and proposes a stronger mitigation method using a clustering approach.
dc.identifier.urihttps://hdl.handle.net/10012/22800
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleDemystifying Foreground-Background Memorization in Diffusion Models
dc.typeMaster Thesis
uws-etd.degreeMaster of Mathematics
uws-etd.degree.departmentDavid R. Cheriton School of Computer Science
uws-etd.degree.disciplineComputer Science
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorKamath, Gautam
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Di_Jimmy.pdf
Size:
31.14 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: