Nitrate sources and cycling at the Turkey Lakes Watershed: A stable isotope approach

dc.contributor.authorSpoelstra, Johnen
dc.date.accessioned2006-08-22T14:39:05Z
dc.date.available2006-08-22T14:39:05Z
dc.date.issued2004en
dc.date.submitted2004en
dc.description.abstract<p class=MsoNormal><span style="mso-spacerun: yes">          </span>Stable isotopic analysis of nitrate (<sup>15</sup>N/<sup>14</sup>N and <sup>18</sup>O/<sup>16</sup>O) was used to trace nitrate sources and cycling under undisturbed conditions and following harvest at the Turkey Lakes Watershed (TLW), located near Sault Ste. Marie, Ontario, Canada. <span style="mso-spacerun: yes">  </span> <p class=MsoNormal><span style="mso-spacerun: yes">    </span><span style="mso-spacerun: yes">      </span>Bulk precipitation collected biweekly at the TLW from 1995 to 2000 had nitrate isotope values that ranged from +42. 4 to +80. 4&permil; for <span style='font-family:Symbol'>d</span><sup>18</sup>O and -6. 3 to +2. 8&permil; for <span style='font-family:Symbol'>d</span><sup>15</sup>N. <span style="mso-spacerun: yes">  </span>An incubation experiment indicated that the isotopic composition of atmospheric nitrate was not compromised by collection methods whereby unfiltered bulk precipitation samples remain in the collector for up to two weeks. <span style="mso-spacerun: yes">  </span> <p class=MsoNormal><span style="mso-spacerun: yes">          </span>The first direct measurement of the isotopic composition of microbial nitrate produced <i>in situ</i> was obtained by eliminating precipitation inputs to three forest floor lysimeters and subsequently watering the area with a nitrate-free solution. <span style="mso-spacerun: yes">  </span>Microbial nitrate had <span style='font-family:Symbol'>d</span><sup>18</sup>O values that ranged from +3. 1 to +10. 1&permil; with a mean value of +5. 2&permil;, only slightly higher than values predicted based on the <span style='font-family:Symbol'>d</span><sup>18</sup>O-H<sub>2</sub>O of the watering solution used. <span style="mso-spacerun: yes">  </span><span style='font-family:Symbol'>d</span><sup>18</sup>O values of soil O<sub>2</sub> (+23. 2 to +24. 1&permil;) down to a depth of 55cm were not significantly different from atmospheric O<sub>2</sub> (+23. 5&permil;) and therefore respiratory enrichment of soil O<sub>2</sub> did not affect the <span style='font-family:Symbol'>d</span><sup>18</sup>O values of microbial nitrate produced at the TLW. <span style="mso-spacerun: yes">  </span> <p class=MsoNormal><span style="mso-spacerun: yes">          </span>Nitrate export from two undisturbed first-order stream basins was dominated by microbial nitrate, with the contribution of atmospheric nitrate peaking at about 30% during snowmelt. <span style="mso-spacerun: yes">  </span>Clear-cutting of catchment 31 in 1997 resulted in elevated nitrate concentrations, reaching levels that exceeded the drinking water limit of 10 mg N/L. <span style="mso-spacerun: yes">  </span>Isotopic analysis indicated that the source of this nitrate was predominantly chemolithoautotrophic nitrification. <span style="mso-spacerun: yes">  </span>The <span style='font-family:Symbol'>d</span><sup>18</sup>O values of microbial nitrate in stream 31 progressively increased during the post-harvest period due to an increase in the proportion of nitrification that occurred in the summer months. <span style="mso-spacerun: yes">  </span>Despite drastic alteration of nitrogen cycling in the catchment by the harvest, <span style='font-family:Symbol'>d</span><sup>15</sup>N-nitrate values in shallow groundwater did not change from the pre-harvest. <span style="mso-spacerun: yes">   </span>Denitrification and plant uptake of nitrate in a small forested swamp in catchment 31 attenuated 65 to 100% of surface water nitrate inputs following harvest, reducing catchment-scale nitrate export by 35 to 80%.en
dc.formatapplication/pdfen
dc.format.extent1300656 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10012/1240
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.rightsCopyright: 2004, Spoelstra, John. All rights reserved.en
dc.subjectEarth Sciencesen
dc.subjectnitrateen
dc.subjectisotopesen
dc.subjectforested catchmentsen
dc.subjectnitrificationen
dc.subjectwetlandsen
dc.subjectforest harvesten
dc.titleNitrate sources and cycling at the Turkey Lakes Watershed: A stable isotope approachen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentEarth Sciencesen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jspoelstra2004.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format