Infinite Sets of D-integral Points on Projective Algebrain Varieties
dc.contributor.author | Shelestunova, Veronika | en |
dc.date.accessioned | 2006-08-22T14:20:55Z | |
dc.date.available | 2006-08-22T14:20:55Z | |
dc.date.issued | 2005 | en |
dc.date.submitted | 2005 | en |
dc.description.abstract | Let <em>X</em>(<em>K</em>) ⊂ <strong>P</strong><sup><em>n</em></sup> (<em>K</em>) be a projective algebraic variety over <em>K</em>, and let <em>D</em> be a subset of <strong>P</strong><sup><em>n</em></sup><sub><em>OK</em></sub> such that the codimension of <em>D</em> with respect to <em>X</em> ⊂ <strong>P</strong><sup><em>n</em></sup><sub><em>OK</em></sub> is two. We are interested in points <em>P</em> on <em>X</em>(<em>K</em>) with the property that the intersection of the closure of <em>P</em> and <em>D</em> is empty in <strong>P</strong><sup><em>n</em></sup><sub><em>OK</em></sub>, we call such points <em>D</em>-integral points on <em>X</em>(<em>K</em>). First we prove that certain algebraic varieties have infinitely many <em>D</em>-integral points. Then we find an explicit description of the complete set of all <em>D</em>-integral points in projective n-space over Q for several types of <em>D</em>. | en |
dc.format | application/pdf | en |
dc.format.extent | 252872 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/10012/1192 | |
dc.language.iso | en | en |
dc.pending | false | en |
dc.publisher | University of Waterloo | en |
dc.rights | Copyright: 2005, Shelestunova, Veronika . All rights reserved. | en |
dc.subject | Mathematics | en |
dc.subject | Integral points | en |
dc.subject | algebraic varieties | en |
dc.title | Infinite Sets of D-integral Points on Projective Algebrain Varieties | en |
dc.type | Master Thesis | en |
uws-etd.degree | Master of Mathematics | en |
uws-etd.degree.department | Pure Mathematics | en |
uws.peerReviewStatus | Unreviewed | en |
uws.scholarLevel | Graduate | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1