Impossibility of Two-Round MPC with the Black-Box Use of Additive Homomorphic Encryption

dc.contributor.authorGhadirli, Ali
dc.date.accessioned2024-09-24T15:09:07Z
dc.date.available2024-09-24T15:09:07Z
dc.date.issued2024-09-24
dc.date.submitted2024-09-12
dc.description.abstractMinimizing the number of rounds in the context of the Multiparty Computation (MPC) realm with respect to an arbitrary number of semi-honest adversaries is considered one of the branches that has gotten attention from researchers recently. Garg et al. proved that two-round semi-honest MPC is impossible from black-box use of two-round oblivious transfer (OT). Before this work, Garg and Srinivasan and Benhamouda and Lin showed a construction of a two-round MPC with a non-black-box use of the underlying two-round OT. Constructions of cryptographic protocols with the black-box use of cryptographic primitives have the advantage of being more efficient compared to non-black-box constructions, since in these constructions treat the underlying primitives as oracles which simplifies protocol design and analysis, leading to potentially more efficient constructions. Reducing the number of rounds has the advantage of making parties able to send their first messages and go offline until all the other parties send their message of the second round and compute the output. Our main result in this paper is to prove an impossibility result: We show that a two-round MPC based on black-box use of additive homomorphic encryption is impossible. This result is stronger than the previous result by Garg et al., mainly because OT can be constructed using additive homomorphic encryption.
dc.identifier.urihttps://hdl.handle.net/10012/21085
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleImpossibility of Two-Round MPC with the Black-Box Use of Additive Homomorphic Encryption
dc.typeMaster Thesis
uws-etd.degreeMaster of Mathematics
uws-etd.degree.departmentDavid R. Cheriton School of Computer Science
uws-etd.degree.disciplineComputer Science
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorHajiabadi, Mohammad
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ghadirli_Ali.pdf
Size:
669.13 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: