Robust-stochastic models for profit maximizing hub location problems

dc.contributor.authorTaherkhani, Gita
dc.contributor.authorAlumur, Sibel A.
dc.contributor.authorHosseini, Mojtaba
dc.date.accessioned2024-09-26T18:55:31Z
dc.date.available2024-09-26T18:55:31Z
dc.date.issued2021
dc.description.abstractThis paper introduces robust-stochastic models for profit maximizing capacitated hub location problems in which two different types of uncertainty including stochastic demand and uncertain revenue are simultaneously incorporated into the problem. First, a two-stage stochastic program is presented where demand and revenue are jointly stochastic. Next, robust-stochastic models are developed to better model uncertainty in the revenue while keeping the demand stochastic. Two particular cases are studied based on the dependency between demand and revenue. In the first case, a robust-stochastic model with a min-max regret objective is developed assuming a finite set of scenarios that describe uncertainty associated with the revenue under a revenue-elastic demand setting. For the case when demand and revenue are independent, robust-stochastic models with a max-min criterion and a min-max regret objective are formulated considering both interval uncertainty and discrete scenarios, respectively. It is proved that the robust-stochastic version with max-min criterion can be viewed as a special case of the min-max regret stochastic model. Exact algorithms based on Benders decomposition coupled with sample average approximation scheme are proposed. Exploiting the repetitive nature of sample average approximation, generic acceleration methodologies are developed to enhance the performance of the algorithms enabling them to solve large-scale intractable instances. Extensive computational experiments are performed to consider the efficiency of the proposed algorithms and also to analyze the effects of uncertainty under different settings. The qualities of the solutions obtained from different modeling approaches are compared under various parameter settings. Computational results justify the need to solve robust-stochastic models to embed uncertainty in decision making to design resilient hub networks.
dc.identifier.urihttps://doi.org/10.1287/trsc.2021.1064
dc.identifier.urihttps://hdl.handle.net/10012/21114
dc.language.isoen
dc.publisherINFORMS
dc.relation.ispartofseriesTransportation Science; 55(6)
dc.subjectHub location
dc.subjectrobust optimization
dc.subjectstochastic demand
dc.subjectBenders decomposition
dc.subjectsample average approximation.
dc.titleRobust-stochastic models for profit maximizing hub location problems
dc.typeArticle
dcterms.bibliographicCitationTaherkhani, G., Alumur, S. A., & Hosseini, M. (2021). Robust stochastic models for profit-maximizing hub location problems. Transportation Science, 55(6), 1322–1350. https://doi.org/10.1287/trsc.2021.1064
uws.contributor.affiliation1Faculty of Engineering
uws.contributor.affiliation2Management Sciences
uws.peerReviewStatusReviewed
uws.scholarLevelFaculty
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Robust-Stochastic paper.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: