An Evaluation of the Safety and Operational Impacts of a Candidate Variable Speed Limit Control Strategy on an Urban Freeway

Loading...
Thumbnail Image

Date

2006

Authors

Allaby, Peter

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Variable Speed Limit Sign (VSLS) systems enable transportation managers to dynamically change the posted speed limit in response to prevailing traffic and/or weather conditions. VSLS are thought to improve safety and reduce driver stress while improving traffic flow and travel times. Although VSLS have been implemented in a limited number of jurisdictions throughout the world, there is currently very limited documentation describing the quantitative safety and operational impacts. The impacts that have been reported are primarily from systems in Europe, and may not be directly transferable to other jurisdictions, such as North America. Furthermore, although a number of modelling studies have been performed to date that quantify the impacts of VSLS, the VSLS control strategies are often too complex or based on unrealistic assumptions and therefore cannot be directly applied for practical applications. Consequently, a need exists for an evaluation framework that quantifies the safety and traffic performance impacts of comprehensive VSLS control strategies suitable for practical applications in North America. This paper presents the results of an evaluation of a candidate VSLS system for an urban freeway in Toronto, Canada. The evaluation was conducted using a microscopic simulation model (i. e. a model that predicts individual vehicle movements) combined with a categorical crash potential model for estimating safety impacts. <br /><br /> The objectives of this thesis are: 1) to validate a real-time crash prediction model for a candidate section of freeway; 2) to develop a candidate VSLS control algorithm with potential for practical applications; 3) to evaluate the performance of the VSLS control strategy for a range of traffic conditions in terms of safety and travel time; and 4) to test the sensitivity of the VSLS impact results to modifications of the control algorithm. <br /><br /> The analysis of the VSLS impacts under varying levels of traffic congestion indicated that the candidate control strategy was able to provide large safety benefits without a significant travel time penalty, but only for a limited range of traffic conditions. The tested algorithm was found to be insufficiently robust to operate effectively over a wide range of traffic conditions. However, by modifying parameters of the control algorithm, preliminary analysis identified potential improvements in the performance of the VSLS. The modified control strategy resulted in less overall travel time penalty without an adverse impact on the safety benefits. It is anticipated that further modifications to the VSLS control strategy could result in a VSLS that is able to operate over a wide range of traffic conditions and provide more consistent safety and travel time benefits, and it is recommended that the framework used in this study is an effective tool for optimizing the algorithm structure and parameter values.

Description

Keywords

Civil & Environmental Engineering, Variable Speed Limits, microsimulation, freeway safety

LC Subject Headings

Citation