UWSpace staff members will be away from May 5th to 9th, 2025. We will not be responding to emails during this time. If there are any urgent issues, please contact GSPA at gsrecord@uwaterloo.ca. If any login or authentication issues arise during this time, please wait until UWSpace Staff members return on May 12th for support.
 

Constraining Robust Information Quantities Improves Adversarial Robustness

dc.contributor.advisorYang, En-Hui
dc.contributor.authorTan, Renhao
dc.date.accessioned2024-12-11T21:02:51Z
dc.date.available2024-12-11T21:02:51Z
dc.date.issued2024-12-11
dc.date.submitted2024-12-10
dc.description.abstractIt is known that deep neural networks (DNNs) are vulnerable to imperceptible adversarial attacks, and this fact raises concerns about their safety and reliability in real-world applications. In this thesis, we aim to boost the robustness of DNNs against white-box adversarial attacks by defining three information quantities: robust conditional mutual information (CMI), robust separation, and robust normalized CMI (NCMI), which can serve as evaluation metrics of robust performance for a DNN. We then utilize these concepts to introduce a novel regularization method that constrains intra-class concentration and increases inter-class separation simultaneously among output probability distributions of attacked data. Our experimental results demonstrate that our method consistently enhances model robustness against C&W and AutoAttack on CIFAR and Tiny-ImageNet datasets, both with and without additional synthetic data. The results show that our approach enhances the robust accuracy of DNNs by up to 2.66% on CIFAR datasets and 3.49% on Tiny-ImageNet against PGD attacks, and by 1.70% on CIFAR and 1.63% on Tiny-ImageNet against AutoAttack, compared to several state-of-the-art adversarial training methods.
dc.identifier.urihttps://hdl.handle.net/10012/21229
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleConstraining Robust Information Quantities Improves Adversarial Robustness
dc.typeMaster Thesis
uws-etd.degreeMaster of Applied Science
uws-etd.degree.departmentElectrical and Computer Engineering
uws-etd.degree.disciplineElectrical and Computer Engineering
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorYang, En-Hui
uws.contributor.affiliation1Faculty of Engineering
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tan_Renhao.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: