Scaling Laws for Compute Optimal Biosignal Transformers

dc.contributor.authorFortin, Thomas
dc.date.accessioned2024-08-20T16:01:16Z
dc.date.available2024-08-20T16:01:16Z
dc.date.issued2024-08-20
dc.date.submitted2024-08-13
dc.description.abstractScaling laws which predict the optimal balance between number of model parameters and number of training tokens given a fixed compute budget have recently been developed for language transformers. These allow model developers to allocate their compute budgets such that they can achieve optimal performance. This thesis develops such scaling laws for the Biosignal Transformer trained separately on both accelerometer data and EEG data. This is done by applying methods used by other researchers to develop similar scaling laws for language transformer models. These are referred to as the iso-FLOP curve method and the parametric loss function method. The Biosignal Transformer model is a transformer model which is designed specifically to be trained on tasks that use biosignals such as EEG, ECG, and accelerometer data as input. For example, the Biosignal Transformer can be trained to detect or classify seizures from EEG signals. The Biosignal Transformer is also of particular interest because it is designed to use unsupervised pre-training on large unlabelled biosignal datasets to improve performance on downstream tasks with smaller labelled fine-tuning datasets. This work develops scaling laws which optimize for the best unsupervised pre-training loss given a fixed compute budget. Results show that the developed scaling laws are successful at predicting a balance between number of parameters and number of training tokens for compute budgets five times larger than those used to develop them such that pre-training loss is minimized. Researchers who intend to scale up the Biosignal Transformer should use these scaling laws to attain optimal pre-training loss from their given compute budgets when applying unsupervised pre-training with the Biosignal Transformer.
dc.identifier.urihttps://hdl.handle.net/10012/20825
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectbiosignal
dc.subjectcompute optimal
dc.subjectunsupervised pre-training
dc.subjectscaling law
dc.subjecttransformer
dc.titleScaling Laws for Compute Optimal Biosignal Transformers
dc.typeMaster Thesis
uws-etd.degreeMaster of Applied Science
uws-etd.degree.departmentSystems Design Engineering
uws-etd.degree.disciplineSystem Design Engineering
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorTripp, Bryan
uws.contributor.affiliation1Faculty of Engineering
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fortin_Thomas.pdf
Size:
1.77 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: