Waterloo Institute for Nanotechnology
Permanent URI for this collectionhttps://uwspace.uwaterloo.ca/handle/10012/11339
This is the collection for Waterloo Institute for Nanotechnology.
Waterloo faculty, students, and staff can contact us or visit the UWSpace guide to learn more about depositing their research.
Browse
Browsing Waterloo Institute for Nanotechnology by Subject "adenosine"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Aptamer-Functionalized Hydrogel Microparticles for Fast Visual Detection of Mercury(II) and Adenosine(American Chemical Society, 2012-04-25) Helwa, Youssef; Dave, Neeshma; Froidevaux, Romain; Samadi, Azadeh; Liu, JuewenWith a low optical background, high loading capacity, and good biocompatibility, hydrogels are ideal materials for immobilization of biopolymers to develop optical biosensors. We recently immobilized mercury and lead binding DNAs within a monolithic gel and demonstrated ultrasensitive visual detection of these heavy metals. The high sensitivity was attributed to the enrichment of the analytes into the gels. The signaling kinetics was slow, however, taking about 1 h to obtain a stable optical signal because of a long diffusion distance. In this work, we aim to understand the analyte enrichment process and improve the signaling kinetics by preparing hydrogel microparticles. DNA-functionalized gel beads were synthesized using an emulsion polymerization technique and most of the beads were between 10 and 50 μm. Acrydite-modified DNA was incorporated by copolymerization. Visual detection of 10 nM Hg2+ was still achieved and a stable signal was obtained in just 2 min. The gel beads could be spotted to form a microarray and dried for storage. A new visual sensor for adenosine was designed and immobilized within the gel beads. The adenosine aptamer binds its target about 1000-fold less tightly compared to the mercury binding DNA, allowing a comparison to be made on analyte enrichment by aptamer-functionalized hydrogels.Item Biomimetic sensing based on chemically induced assembly of a signaling DNA aptamer on a fluid bilayer membrane(Royal Society of Chemistry, 2012-04-18) Dave, Neeshma; Liu, JuewenThe adenosine aptamer was split into two halves and linked to a fluid liposome surface; addition of adenosine resulted in aptamer assembly, which did not occur if the split aptamer was attached to silica nanoparticles, demonstrating the feasibility of using aptamer probes to study diffusion within lipid membranes.Item Light-Activated Metal-Coordinated Supramolecular Complexes with Charge-Directed Self-Assembly(American Chemical Society, 2013-02-21) Lopez, Anand; Liu, JuewenMetal-coordinated materials are attractive for many applications including catalysis, sensing, and controlled release. Adenine and its derivatives have been widely used to generate many coordination complexes, polymers, and nanoparticles. However, few of these materials display fluorescence. Herein, we report fluorescent gold complexes and nanoclusters formed with adenosine, deoxyadenosine, AMP, and ATP, where the former two produced micrometer-sized particles and the latter two produced molecular clusters. Only weak fluorescence was produced with adenine, while no emission was observed with uridine, cytidine, or guanosine. We found that adding citrate and light exposure are two key factors to generate fluorescence, and their mechanistic roles have been explored. In all the products, the ratio between gold and adenine was determined to be 1:1 using UV–vis spectroscopy. Mass spectrometry showed clusters containing 2, 4, and 6 gold atoms in the gas phase. The fluorescence peak is around 470 nm for the AMP and ATP complex and 480 nm for the (deoxy)adenosine complexes. This work has provided a systematic approach to obtain fluorescent metal coordinated polymers and materials with tunable sizes, which will find applications in analytical chemistry, drug delivery, and imaging. The fundamental physical chemistry of these materials has been systematically explored.