Waterloo Institute for Nanotechnology
Permanent URI for this collectionhttps://uwspace.uwaterloo.ca/handle/10012/11339
This is the collection for Waterloo Institute for Nanotechnology.
Waterloo faculty, students, and staff can contact us or visit the UWSpace guide to learn more about depositing their research.
Browse
Browsing Waterloo Institute for Nanotechnology by Subject "Acid"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item DNA Adsorption by ZnO Nanoparticles near Its Solubility Limit: Implications for DNA Fluorescence Quenching and DNAzyme Activity Assays(American Chemical Society, 2016-06-07) Ma, Lingzi; Liu, Biwu; Huang, Po-Jung Jimmy; Zhang, Xu; Liu, JuewenZinc oxide (ZnO) is a highly important material, and Zn2+ is a key metal ion in biology. ZnO and Zn2+ interconvert via dissolution and hydrolysis/condensation. In this work, we explore their interactions with DNA, which is important for biointerface, analytical, and bioinorganic chemistry. Fluorescently labeled DNA oligonucleotides were adsorbed by a low concentration (around 5 mu g/mL) of ZnO nanoparticles, near the solubility limit. Right after mixing, fluorescence quenching occurred, indicating DNA adsorption. Then, fluorescence recovered, attributable to ZnO dissolution. The dissolution rate followed A(5) > T-5 > C-5. Dissolution was slower with longer DNA. The adsorption affinity was also measured by a displacement assay to be G(5) > C-5 > T-5 > A(5), suggesting that tightly adsorbed DNA can retard ZnO dissolution. Electrostatic interactions are important for DNA adsorption because ZnO is positively charged at neutral pH, and a high salt concentration inhibits DNA adsorption. Next, in situ formation of ZnO from Zn2+ was studied. First, titrating Zn2+ into a fluorescently labeled oligonucleotide at pH 7.5 resulted in an abrupt fluorescence quenching beyond 0.2 mM Zn2+. At pH 6, quenching occurred linearly with the Zn2+ concentration, suggesting the effect of Zn2+ precipitation at pH 7.5. Second, a Zn2+-dependent DNA-cleaving DNAzyme was studied. This DNAzyme was inhibited at higher than 2 mM Zn2+, attributable to Zn2+ precipitation and adsorption of the DNAzyme. This paper has established the interplay between DNA, Zn2+, and ZnO. This understanding can avoid misinterpretation of DNA assay results and adds knowledge to DNA immobilization.Item A DNAzyme requiring two different metal ions at two distinct sites(Oxford University Press, 2015-12-10) Zhou, Wenhu; Zhang, Yupei; Huang, Po-Jung Jimmy; Ding, Jinsong; Liu, JuewenMost previously reported RNA-cleaving DNAzymes require only a single divalent metal ion for catalysis. We recently reported a general trivalent lanthanide-dependent DNAzyme named Ce13d. This work shows that Ce13d requires both Na+ and a trivalent lanthanide (e.g. Ce3+), simultaneously. This discovery is facilitated by the sequence similarity between Ce13d and a recently reported Na+-specific DNAzyme, NaA43. The Ce13d cleavage rate linearly depends on the concentration of both metal ions. Sensitized Tb3+ luminescence and DMS footprinting experiments indicate that the guanines in the enzyme loop are important for Na+-binding. The Na+ dissociation constants of Ce13d measured from the cleavage activity assay, Tb3+ luminescence and DMS footprinting are 24.6, 16.3 and 47 mM, respectively. Mutation studies indicate that the role of Ce3+ might be replaced by G(23) in NaA43. Ce3+ functions by stabilizing the transition state phosphorane, thus promoting cleavage. G(23) competes favorably with low concentration Ce3+ (below 1 mu M). The G(23)-to-hypoxanthine mutation suggests the N1 position of the guanine as a hydrogen bond donor. Together, Ce13d has two distinct metal binding sites, each fulfilling a different role. DNAzymes can be quite sophisticated in utilizing metal ions for catalysis and molecular recognition, similar to protein metalloenzymes.Item A Selective Na+ Aptamer Dissected by Sensitized Tb3+ Luminescence(Wiley, 2016-08-17) Zhou, Wenhu; Ding, Jinsong; Liu, JuewenA previous study of two RNA-cleaving DNAzymes, NaA43 and Ce13d, revealed the possibility of a common Na+ aptamer motif. Because Na+ binding to DNA is a fundamental biochemical problem, the interaction between Ce13d and Na+ was studied in detail by using sensitized Tb3+ luminescence spectroscopy. Na+ displaces Tb3+ from the DNAzyme, and thus quenches the emission from Tb3+. The overall requirement for Na+ binding includes the hairpin and the highly conserved 16-nucleotide loop in the enzyme strand, along with a few unpaired nucleotides in the substrate. Mutation studies indicate good correlation between Na+ binding and cleavage activity, thus suggesting a critical role of Na+ binding for the enzyme activity. Ce13d displayed a K-d of approximate to 20mm with Na+ (other monovalent cations: 40-60mm). The K-d values for other metal ions are mainly due to non-specific competition. With a single nucleotide mutation, the specific Na+ binding was lost. Another mutant improved K-d to 8mm with Na+. This study has demonstrated a Na+ aptamer with important biological implications and analytical applications. It has also defined the structural requirements for Na+ binding and produced an improved mutant.Item A Silver DNAzyme(American Chemical Society, 2016-04-05) Saran, Runjhun; Liu, JuewenSilver is a very common heavy metal, and its detection is of significant analytical importance. DNAzymes are DNA-based catalysts; they typically recruit divalent and trivalent metal ions for catalysis. Herein, we report a silver specific RNA-cleaving DNAzyme named Ag10c obtained after six rounds of in vitro selection. Ag10c displays a catalytic rate of 0.41 min(-1) with 10 mu M Ag+ at pH 7.5 with 200 mM NaNO3, while its activity is completely inhibited with the same concentration of NaCl. Ag10c is highly specific for Ag+ among all the tested metals. A catalytic beacon biosensor is designed by labeling a fluorophore and a quencher on the DNAzyme. Fluorescence enhancement is observed in the presence of Ag+ with a detection limit of 24.9 nM Ag+. The sensor shows a similar analytical performance in Lake Huron water. This is the first monovalent transition metal dependent RNA-cleaving DNAzyme. Apart from its biosensor application, this study strengthens the idea of exploring beyond the traditional understanding of multivalent ion dependent DNAzyme catalysis.