Repository logo
About
Deposit
Communities & Collections
All of UWSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Warren, Alkris"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Towards the development of an all-optical, non-contact, photon absorption remote sensing (PARS) endomicroscope for blood vasculature imaging
    (University of Waterloo, 2025-05-06) Warren, Alkris
    The need for high-resolution, label-free imaging techniques has spurred the development of advanced endoscopic technologies for real-time tissue characterization. This thesis presents the design, development, and validation of the first forward-viewing, non-contact, all-optical Photon Absorption Remote Sensing (PARS) endomicroscope for in vivo vascular imaging. The proposed system is designed to leverage the endogenous optical absorption of hemoglobin to achieve high-resolution contrast, without the use of exogenous labels or acoustic coupling, addressing longstanding limitations of conventional absorption-based and scattering-based imaging modalities.Two prototype designs were developed using image guide fiber (IGF) technology and achromatic graded-index (GRIN) lenses, with systematic de-risking experiments guiding their evolution. The first prototype (P1) achieved a resolution of ~1 µm and signal-to-noise ratio (SNR) of 22 dB, demonstrating the feasibility of high-fidelity PARS imaging within a 1.6mm outer diameter (OD) device footprint. A second design (P2) was introduced to address constraints in working distance and imaging depth for in vivo use, trading resolution for improved accessibility in biological tissues. This work establishes a novel platform for PARS miniaturization and integration with widefield endoscopy, positioning the technology for future applications, including real-time, in situ virtual biopsies, blood oxygenation measurement, and surgical guidance within internal bodily cavities. The results represent a foundational advancement in the translation of PARS microscopy to clinical settings and lay the groundwork for real-time, high-resolution endoscopic diagnostics.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback