Repository logo
About
Deposit
Communities & Collections
All of UWSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wang, Yihao"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Deployment of functional DNA-based biosensors for environmental water analysis
    (Elsevier, 2022-04-14) Zhao, Yichen; Yavari, Kayvan; Wang, Yihao; Pi, Kunfu; Van Cappellen, Philippe; Liu, Juewen
    Various functional DNA molecules have been used for the detection of environmental contaminants in water, but their practical applications have been limited. To address this gap, this review highlights the efforts to develop field-deployable water quality biosensors. The biosensor devices include microfluidic, lateral flow and paper-based devices, and other novel ideas such as the conversion of glucometers for the detection of environmental analytes. In addition, we also review DNA-functionalized hydrogels and their use in diffusive gradients in thin films (DGT) devices. We classify the sensors into one-step and two-step assays and discuss their practical implications. While the review is focused on works reported in the last five years, some classic early works are cited as well. Overall, most of the existing work only tested spiked water samples. Future work needs to shift to real environmental samples and the comparison of DNA-based sensors to standard analytical methods.
  • No Thumbnail Available
    Item
    Protection of DNA by metal ions at 95 °C: from lower critical solution temperature (LCST) behavior to coordination-driven self-assembly
    (Royal Society of Chemistry, 2022-09-05) Lu, Chang; Xu, Yuancong; Huang, Po-Jung Jimmy; Zandieh, Mohamad; Wang, Yihao; Zheng, Jinkai; Liu, Juewen
    While polyvalent metal ions and heating can both degrade nucleic acids, we herein report that a combination of them leads to stabilization. After incubating 4 mM various metal ions and DNA oligonucleotides at 95 °C for 3 h at pH 6 or 8, metal ions were divided into four groups based on gel electrophoresis results. Mg2+ can stabilize DNA at pH 6 without forming stable nanoparticles at room temperature. Co2+, Cu2+, Cd2+, Mn2+ and Zn2+ all protected the DNA and formed nanoparticles, whereas the nanoparticles formed with Fe2+ and Ni2+ were so stable that they remained even in the presence of EDTA. At pH 8, Ce3+ and Pb2+ showed degraded DNA bands. For Mg2+, better protection was achieved with higher metal and DNA concentrations. By monitoring temperature-programmed fluorescence change, a sudden drop in fluorescence intensity attributable to the lower critical solution temperature (LCST) transition of DNA was found to be around 80 °C for Mg2+, while this transition temperature decreased with increasing Mn2+ concentration. The unexpected thermal stability of DNA enabled by metal ions is useful for extending the application of DNA at high temperatures, forming coordination-driven nanomaterials, and it might offer insights into the origin of life on the early Earth.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback