Browsing by Author "Verdugo, Pablo"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Modeling and energy management of hangar thermo-electrical microgrid for electric plane charging considering multiple zones and resources(Elsevier, 2025-02-01) Verdugo, Pablo; Cañizares, Claudio; Pirnia, MehrdadAchieving net zero goals by 2050 is driving an energy transition towards clean electrical energy. Consequently, many initiatives have been proposed aiming to reduce carbon emissions in the building and transportation sectors, focusing, for instance, on the implementation of efficient heating and cooling systems based on heat pumps and the use of electric planes. Microgrids can effectively integrate thermal and electrical energy resources and loads to satisfy customer demands while providing technical, economic, and environmental benefits. Thus, this paper proposes the implementation of a model of a hangar microgrid and its Energy Management System to optimize the dispatch of resources of such thermo-electrical airport grid, using a Model Predictive Control approach to address uncertainties, and including a detailed building thermal model, heat pump modeling for the heating and cooling systems, and battery degradation. The proposed mathematical model of the Energy Management System is applied to a model of a microgrid being developed for a hangar at the Waterloo Wellington Flight Centre in Ontario, Canada, taking into account the specific characteristics of the microgrid’s components, the expected energy consumption of the equipment and the electric plane used for pilot training based on field measurements, and multi-room temperature control requirements, seeking to ensure a reliable and cost-effective operation, while considering the occupants’ comfort in different spaces. The results indicate that the proposed Energy Management System model, featuring multi-room temperature control through multiple thermal resources, can achieve significant savings in operational costs and CO2 emissions compared to a scenario where the microgrid is not deployed and another where a single-room building thermal model with a single heat pump is included.Item Modeling and optimal operation of sustainable thermoelectric microgrids with phase-change material thermal system(Elsevier, 2025-08-05) Verdugo, Pablo; Cañizares, Claudio; Pirnia, Mehrdad; Leibfried, ThomasThis paper proposes an Energy Management System for a thermoelectric microgrid that incorporates the modeling of a unique Phase-Change Material-based thermal system, capable of operating in both active and passive modes to minimize operating costs while guaranteeing thermal comfort, while properly considering the microgrid’s thermal power requirements and indoor temperature control. The proposed model also includes a detailed thermal representation of buildings to consider relevant thermal sources and room heat exchange, as well as heat pumps, water tanks for thermal storage, and battery degradation. A Model Predictive Control approach is used to address uncertainties in demand and environmental conditions. The proposed Energy Management System model is applied to the Energy Smart Home Lab microgrid located at the Karlsruhe Institute of Technology, in Germany, taking into account the specific characteristics of the microgrid’s components, expected energy consumption, and indoor temperature control requirements. Simulation results demonstrate the feasible application of the developed Energy Management System for the optimal operation of the actual microgrid considered, illustrating the thermoelectric microgrid’s power balance and temperature fluctuations of the associated components, with particular emphasis on the operation of the Phase-Change Material system, to showcase its active and passive thermal contribution under extreme weather conditions.