Repository logo
About
Deposit
Communities & Collections
All of UWSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tan, Renhao"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Constraining Robust Information Quantities Improves Adversarial Robustness
    (University of Waterloo, 2024-12-11) Tan, Renhao; Yang, En-Hui
    It is known that deep neural networks (DNNs) are vulnerable to imperceptible adversarial attacks, and this fact raises concerns about their safety and reliability in real-world applications. In this thesis, we aim to boost the robustness of DNNs against white-box adversarial attacks by defining three information quantities: robust conditional mutual information (CMI), robust separation, and robust normalized CMI (NCMI), which can serve as evaluation metrics of robust performance for a DNN. We then utilize these concepts to introduce a novel regularization method that constrains intra-class concentration and increases inter-class separation simultaneously among output probability distributions of attacked data. Our experimental results demonstrate that our method consistently enhances model robustness against C&W and AutoAttack on CIFAR and Tiny-ImageNet datasets, both with and without additional synthetic data. The results show that our approach enhances the robust accuracy of DNNs by up to 2.66% on CIFAR datasets and 3.49% on Tiny-ImageNet against PGD attacks, and by 1.70% on CIFAR and 1.63% on Tiny-ImageNet against AutoAttack, compared to several state-of-the-art adversarial training methods.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback