Browsing by Author "Bai, Feng"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Adsorption of DNA Oligonucleotides by Self-Assembled Metalloporphyrin Nanomaterials(American Chemical Society, 2022-03-08) Wang, Jinghan; Wang, Zhen; Huang, Po-Jung Jimmy; Bai, Feng; Liu, JuewenPorphyrin assemblies have controllable morphology, high biocompatibility, and good optical properties and were widely used in biomedical diagnosis and treatment. With the development of DNA biotechnology, combining DNA with porphyrin assemblies can broaden the biological applications of porphyrins. Porphyrin assemblies can serve as nanocarriers for DNA, although the fundamental interactions between them are not well understood. In this work, zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) assemblies were prepared in the presence of various surfactants and at different pH values, yielding a variety of aggregation forms. Among them, the hexagonal stacking form exposes more pyridine substituents, and the hydrogen bonding force between the substituents and the DNA bases allows the DNA to be quickly adsorbed on the surface of the assemblies. The effects of DNA sequence and length were systematically tested. In particular, the adsorption of duplex DNA was less efficient compared to the adsorption of single-stranded DNA. This fundamental study is useful for the further combination of DNA and porphyrin assemblies to prepare new functional hybrid nanomaterials.Item Self-assembled manganese phthalocyanine nanoparticles with enhanced peroxidase-like activity for anti-tumor therapy Research Article Published: 29 September 2021(2021-09-29) Wang, Jinghan; Gao, Shanqing; Wang, Xiao; Zhang, Haozhen; Ren, Xitong; Liu, Juewen; Bai, FengThe use of functional nanoparticles as peroxidase-like (POD-like) catalyst has recently become a focus of research in cancer therapy. Phthalocyanine is a macrocyclic conjugated metal ligand, which is expected to achieve a high POD-like catalytic activity, generating free radicals and inhibiting the proliferation of cancer cells. In this paper, we synthesized phthalocyanine nanocrystals with different structures through noncovalent self-assembly confined within micro-emulsion droplets, and manganese phthalocyanine (MnPc) possessing a metal-N-C active center was used as the building block. These nano-assemblies exhibit shape-dependent POD-like catalytic activities, because the emulsifier and MnPc co-mixed assembly reduced the close packing between MnPc molecules and exposed more active sites. The assembly had a water-dispersed nanostructure, which is conducive to accumulation at tumor sites through the enhanced permeability and retention effect (EPR). Because of a highly efficient microenvironmental response, the assembly showed higher catalytic activity only emerged under the acidic tumor-like microenvironment, but caused less damage to normal tissues in biomedical applications. In vivo and in vitro catalytic therapy tests showed excellent anti-tumor effects. This work explored a new way for the application of metal-organic macromolecules such as MnPc as nanozymes for catalytic tumor therapy.